Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Tob Induc Dis ; 222024.
Artículo en Inglés | MEDLINE | ID: mdl-38650847

RESUMEN

INTRODUCTION: Apoptosis and chronic inflammation are the main phenotypes in chronic obstructive pulmonary disease (COPD) pathogenesis. Cigarette smoke exposure is the leading risk factor for COPD, which causes aberrant airway epithelial structure and function. As a non-classical calpain, the molecular function of calpain5 (CAPN5) in COPD remains unclear. This study investigated the role of CAPN5 in mediating cigarette smoke extract (CSE)-induced apoptosis and inflammation. METHODS: Immunohistochemistry (IHC) and Western blotting (WB) were performed to detect the location and expression of CAPN5. In vitro, BEAS-2B cells were transfected with CAPN5 siRNA or CAPN5 plasmid, followed by phosphate-buffered saline (PBS) or cigarette smoke extract (CSE) treatment. The protein expression levels of CAPN5, NF-κB p65, p-p65, IκBα, p-IκBα and apoptosis proteins (BCL-2, BAX) were measured by WB. Flow cytometry (FCM) was performed to analyze the cell apoptosis index. RESULTS: CAPN5 was mainly expressed in the airway epithelium and significantly decreased in the COPD-smoker and emphysema-mouse groups. Silencing CAPN5 significantly decreased the protein expression of BCL-2, IκBα, and increased p-p65 and BAX protein expression. Additionally, an increased apoptosis index was detected after silencing CAPN5. Moreover, overexpression of CAPN5 partly inhibited IκBα degradation and p65 activation, and reduced CSE-induced inflammation and apoptosis. CONCLUSIONS: These combined results indicate that CAPN5 could protect against CSE-induced apoptosis and inflammation, which may provide a potential therapeutic target for smoking-related COPD.

2.
iScience ; 27(3): 109252, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38439981

RESUMEN

DNA demethylase TET2 was related with lung function. However, the precise role of TET2 in cigarette smoke (CS)-induced apoptosis of airway epithelium cells, and the mechanisms involved, have yet to be elucidated. Here, we showed that CS decreased TET2 protein levels but had no significant effect on its mRNA levels in lung tissues of chronic obstructive pulmonary disease (COPD) patients and CS-induced COPD mice model and even in airway epithelial cell lines. TET2 could inhibit CS-induced apoptosis of airway epithelial cell in vivo and in vitro. Moreover, we identified ubiquitin-specific protease 21 (USP21) as a deubiquitinase of TET2 in airway epithelial cells. USP21 interacted with TET2 and inhibited CSE-induced TET2 degradation. USP21 downregulated decreased TET2 abundance and further reduced the anti-apoptosis effect of TET2. Thus, we draw a conclusion that the USP21/TET2 axis is involved in CS-induced apoptosis of airway epithelial cells.

3.
Tob Induc Dis ; 222024.
Artículo en Inglés | MEDLINE | ID: mdl-38274000

RESUMEN

INTRODUCTION: Endothelial progenitor cells (EPCs) dysfunction is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). The transcription factor PU.1 is essential for the maintenance of stem/progenitor cell homeostasis. However, the role of PU.1 in COPD and its effects on EPC function and lung-homing, remain unclear. This study aimed to explore the protective activity of PU.1 and the underlying mechanisms in a cigarette smoke extract (CSE)-induced emphysema mouse model. METHODS: C57BL/6 mice were treated with CSE to establish a murine emphysema model and injected with overexpressed PU.1 or negative control adeno-associated virus. Morphometry of lung slides, lung function, and apoptosis of lung tissues were evaluated. Immunofluorescence co-localization was used to analyze EPCs homing into the lung. Flow cytometry was performed to detect EPC count in lung tissues and bone marrow (BM). The angiogenic ability of BM-derived EPCs cultured in vitro was examined by tube formation assay. We determined the expression levels of PU.1, ß-catenin, C-X-C motif ligand 12 (CXCL12), C-X-C motif receptor 4 (CXCR4), stem cell antigen-1 (Sca-1), and stemness genes. RESULTS: CSE exposure significantly reduced the expression of PU.1 in mouse lung tissues, BM, and BM-derived EPCs. PU.1 overexpression attenuated CSE-induced emphysematous changes, lung function decline, and apoptosis. In emphysematous mice, PU.1 overexpression markedly reversed the decreased proportion of EPCs in BM and promoted the lung-homing of EPCs. The impaired angiogenic ability of BM-derived EPCs induced by CSE could be restored by the overexpression of PU.1. In addition, PU.1 upregulation evidently reversed the decreased expression of ß-catenin, CXCL12, CXCR4, Scal-1, and stemness genes in mouse lung tissues, BM, and BM-derived EPCs after CSE exposure. CONCLUSIONS: PU.1 alleviates the inhibitory effects of CSE on EPC function and lung-homing via activating the canonical Wnt/ß-catenin pathway and CXCL12/CXCR4 axis. While further research is needed, our research may indicate a potential therapeutic target for COPD patients.

4.
J Environ Manage ; 351: 119922, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150929

RESUMEN

Layered double hydroxides (LDHs) have gained significant recognition for their facile synthesis and super-hydrophilic two-dimensional (2D) structure to fabricate antifouling membranes for oily wastewater separation. However, conventional PVDF membranes, due to their hydrophobic nature and inert matrix, often exhibit insufficient permeance and compatibility. In this study, a novel NiFe-LDH@MnO2/PVDF membrane was synthesized using ultrasonic, redox, and microwave-hydrothermal processes. This innovative approach cultivated grass-like NiFe-LDH@MnO2 nanoparticles within an inert PVDF matrix, promoting the growth of highly hydrophilic composites. The presence of NiFe-LDH@MnO2 resulted in pronounced enhancements in surface morphology, interfacial wettability, and oil rejection for the fabricated membrane. The optimal NiFe-LDH@MnO2/PVDF-2 membrane exhibited an extremely high pure water flux (1364 L m-2•h-1), and increased oil rejection (from 81.2% to 93.5%) without sacrificing water permeation compared to the original PVDF membrane. Additionally, the NiFe-LDH@MnO2/PVDF membrane demonstrated remarkable antifouling properties, evident by an exceptional fouling resistance ratio of 96.8% following slight water rinsing. Mechanistic insights into the enhanced antifouling performance were elucidated through a comparative "semi-immersion" investigation. The facile synthesis method, coupled with the improved membrane performance, highlights the potential application prospects of this hybrid membrane in emulsified oily wastewater treatment and environmental remediation.


Asunto(s)
Incrustaciones Biológicas , Polímeros de Fluorocarbono , Polivinilos , Purificación del Agua , Compuestos de Manganeso , Óxidos , Aceites , Agua , Purificación del Agua/métodos
5.
Redox Biol ; 67: 102916, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37812881

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a significant global cause of morbidity and mortality currently. Long-term exposure of cigarette smoke (CS) inducing persistent inflammation, small airway remodeling and emphysematous lung are the distinguishing features of COPD. Ferroptosis, occurred in lung epithelial cells has recently been reported to be associated with COPD pathogenesis. DNA dioxygenase ten-eleven translocation 2 (TET2) is an important demethylase and its genetic mutation is associated with low forced expiratory volume in 1 s (FEV1) of lung function. However, its role in COPD remains elusive. Here, we found that TET2 regulates CS induced lipid peroxidation through demethylating glutathione peroxidase 4 (GPx4), thus alleviating airway epithelial cell ferroptosis in COPD. TET2 protein levels were mainly reduced in the airway epithelia of COPD patients, mouse models, and CS extract-treated bronchial epithelial cells. The deletion of TET2 triggered ferroptosis and further exaggerated CS-induced airway remodeling, inflammation, and emphysema in vivo. Moreover, we demonstrated that TET2 silencing intensified ferroptosis, while TET2 overexpression inhibited ferroptosis in airway epithelial cell treated with CSE. Mechanically, TET2 protected airway epithelial cells from CS-induced lipid peroxidation and ferroptosis through demethylating the promoter of glutathione peroxidase 4 (GPx4). Finally, co-administration of methylation inhibitor 5'-aza-2'-deoxycytidine (5-AZA) and the antioxidant N-acetyl-cysteine (NAC) have more protective effects on CS-induced COPD than either administration alone. Overall, our study reveals that TET2 is an essential modulator in the lipid peroxidation and ferroptosis of airway epithelial cell, and could act as a potential therapeutic target for CS-induced COPD.


Asunto(s)
Fumar Cigarrillos , Dioxigenasas , Ferroptosis , Enfermedad Pulmonar Obstructiva Crónica , Ratones , Animales , Humanos , Ferroptosis/genética , Fumar Cigarrillos/efectos adversos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Pulmón/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Células Epiteliales/metabolismo , Inflamación/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Dioxigenasas/farmacología
6.
Cell Death Dis ; 14(9): 614, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726265

RESUMEN

Ovarian tumor family deubiquitinase 4 (OTUD4), a member of the OTU deubiquitinating enzyme, is implicated to decrease in cancer to regulate cell apoptosis. However, the role of OTUD4 in cigarette smoke induced epithelial cell apoptosis and its mechanism have not been elucidated. In this study, we showed that OTUD4 protein reduced in CSE treated mice and airway epithelial cells. OTUD4 silence aggravated cell apoptosis and emphysematous change in the lung tissue of cigarette smoke extract (CSE) treated mice. Additionally, restoration of OTUD4 in the lung of mice alleviated CSE induced apoptosis and emphysematous morphology change. The effect of OTUD4 on cell apoptosis was also confirmed in vitro. Through protein profile screening, we identified that OTUD4 may interact with plasminogen activator inhibitor 1(PAI-1). We further confirmed that OTUD4 interacted with PAI-1 for de-ubiquitination and inhibiting CSE induced PAI-1 degradation. Furthermore, the protective role of OTUD4 in airway epithelial cells apoptosis was blocked by PAI-1 deactivation. Taken together, our data suggest that OTUD4 regulates cigarette smoke (CS)-triggered airway epithelial cell apoptosis via modulating PAI-1 degradation. Targeting OUTD4/PAI-1 signaling might potentially provide a therapeutic target against the lung cell apoptosis in cigarette smoke (CS)-induced emphysema.


Asunto(s)
Neoplasias Ováricas , Inhibidor 1 de Activador Plasminogénico , Animales , Ratones , Femenino , Humanos , Inhibidor 1 de Activador Plasminogénico/genética , Apoptosis , Células Epiteliales , Pulmón , Proteasas Ubiquitina-Específicas
7.
ISA Trans ; 140: 55-70, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37385860

RESUMEN

Deep neural networks (DNNs) have shown high accuracy in fault diagnosis, but they struggle to effectively capture changes over time in multivariate time-series data and suffer from resource consumption issues. Spike deep belief networks (spike-DBNs) address these limitations by capturing the change in time-varying signals and reducing resource consumption, but they sacrifice accuracy. To overcome these limitations, we propose integrating an event-driven approach into spike-DBNs through the Latency-Rate coding method and the reward-STDP learning rule. The encoding method enhances the event representation capability, while the learning rule focuses on the global behavior of spiking neurons triggered by events. Our proposed method not only maintains low resource consumption but also improves the fault diagnosis ability of spike-DBNs. We conducted a series of experiments to verify our model's performance, and the results demonstrate that our proposed method improves the accuracy of fault classification of manipulators and reduces learning time by nearly 76% compared to spike-CNN under the same conditions.

9.
Front Genet ; 14: 1032683, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36861126

RESUMEN

Background: The role of alcohol in carcinogenesis has received increasing attention in recent years. Evidence shows its impacts on various aspects, including epigenetics alteration. The DNA methylation patterns underlying alcohol-associated cancers are not fully understood. Methods: We investigated the aberrant DNA methylation patterns in four alcohol-associated cancers based on the Illumina HumanMethylation450 BeadChip. Pearson coefficient correlations were identified between differential methylated CpG probes and annotated genes. Transcriptional factor motifs were enriched and clustered using MEME Suite, and a regulatory network was constructed. Results: In each cancer, differential methylated probes (DMPs) were identified, and 172 hypermethylated and 21 hypomethylated pan-cancer DMPs (PDMPs) were examined further. Annotated genes significantly regulated by PDMPs were investigated and enriched in transcriptional misregulation in cancers. The CpG island chr19:58220189-58220517 was hypermethylated in all four cancers and silenced in the transcription factor ZNF154. Various biological effects were exerted by 33 hypermethylated and seven hypomethylated transcriptional factor motifs grouped into five clusters. Eleven pan-cancer DMPs were identified to be associated with clinical outcomes in the four alcohol-associated cancers, which might provide a potential point of view for clinical outcome prediction. Conclusion: This study provides an integrated insight into DNA methylation patterns in alcohol-associated cancers and reveals the corresponding features, influences, and potential mechanisms.

10.
Innov Aging ; 7(2): igad006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36941887

RESUMEN

Background and Objectives: To construct a comprehensive healthy aging score (HAS) and explore its association with all-cause mortality and its potential interactions with other demographics on mortality. Research Design and Methods: This study included 5,409 participants aged ≥60 years from the China Health and Retirement Longitudinal Study. An HAS was constructed based on three dimensions of healthy aging including intrinsic capacity (IC), environmental support (ES), and chronic disease (CD), which were assessed at baseline, and categorized by tertiles (poor, moderate, and high). Participants were followed up biennially for all-cause mortality through the death registration or family interview from 2011 to 2018. Data were analyzed using Cox regression, Laplace regression, and receiver-operating characteristic analysis. Results: During 7 years of follow-up, 877 (16.21%) participants died. An HAS was constructed based on the cognition, mobility, and instrumental activity of daily living in the IC dimension; housing in the ES dimension; and hypertension, diabetes, chronic lung disease, stroke, and cancer in the CD dimension, which was associated with death. HAS seems a good predictor of all-cause mortality, with an area under the curve of 0.749. The hazard ratios and 95% confidence intervals for all-cause mortality related to moderate and poor HAS (vs high HAS) were 1.26 (1.01-1.56) and 2.38 (1.94-2.91), respectively. The median survival time was 2.46 years shorter in participants with poor HAS than those with high HAS. There were significant additive interactions of HAS with age, sex, and marital status on death. Discussion and Implications: Poor HAS may increase mortality and shorten survival, especially among older, male, and single adults.

11.
Anal Chim Acta ; 1245: 340861, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36737136

RESUMEN

Designing highly active nanozymes for bioanalysis and environmental sensing remains a challenge. In this study, transition metal, palladium (Pd) and iron (Fe), doped germanium oxide (GeO2) nanozyme was designed and optimized. Compared with the pristine GeO2 nanozyme, the transition metal doped GeO2 nanozyme have lower Michaelis-Menten constants and higher catalytic activity, indicating that the Pd and Fe doped GeO2 nanozyme not only enhance their affinity for the substrate but also improve its catalytic activity. In addition, a colorimetric sensor based on the GeO2@Pd-H2O2-TMB system was constructed for the visual detection of simazine in water samples due to the good affinity between TMB and simazine. This sensor has good selectivity and sensitivity with a detection limit of 6.21 µM because of the highest catalytic performance of GeO2@Pd nanozyme. This study broadens the application of nanozymes in environmental field and other nanozymes can also be enhanced in activity by simple transition metal doping.


Asunto(s)
Residuos de Plaguicidas , Residuos de Plaguicidas/análisis , Peróxido de Hidrógeno/análisis , Simazina/análisis , Paladio/química , Agua/análisis , Colorimetría
12.
Cell Death Dis ; 14(1): 2, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596780

RESUMEN

Milk fat globule epidermal growth factor 8 (MFG-E8) participates in a range of cellular processes, including reducing apoptosis and oxidative stress. However, its protective activity against cigarette smoke-induced ferroptosis in the pathogenesis of the chronic obstructive pulmonary disease (COPD) and the modulation of MFG-E8 remain unclear. Here, we showed that cigarette smoke diminished MFG-E8 protein levels but had no significant effect on its mRNA levels in lung tissues of humans and mice and in two human bronchial epithelial cell lines. MFG-E8 could attenuate ferroptosis induced by cigarette smoke extract (CSE) in vivo and in vitro. We identified ubiquitin-specific protease 14 (USP14) as a deubiquitinase of MFG-E8 in human bronchial epithelial cells. USP14 interacted with, deubiquitinated and stabilized MFG-E8. Furthermore, USP14 inhibited CSE-induced MFG-E8 proteasomal degradation. USP14 expression downregulated by CSE decreased MFG-E8 abundance and further reduced the antiferroptotic effect of MFG-E8. These findings suggest that USP14 is an essential regulator of MFG-E8 through the proteasomal pathway and that the USP14/MFG-E8 axis plays a critical role in regulating CSE-induced ferroptosis of bronchial epithelial cells.


Asunto(s)
Fumar Cigarrillos , Ferroptosis , Humanos , Animales , Ratones , Factor VIII , Células Epiteliales , Enzimas Desubicuitinizantes , Ubiquitina Tiolesterasa/genética
13.
Int Immunopharmacol ; 115: 109577, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36584569

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a significant cause of morbidity and mortality worldwide and is characterized by chronic airway inflammation and lung parenchymal cell apoptosis. Cigarette smoke is the major risk factor for the occurrence and development of COPD. Taxifolin (TAX) showed promising pharmacological effects in the management of inflammation, oxidative stress, and apoptosis. In the present study, our results demonstrated that TAX significantly alleviated cigarette smoke-induced inflammation and apoptosis both in vivo and in vitro. TAX notably lowered the elevated total cell count in mouse BALF compared with that in the COPD group. The cigarette smoke-induced emphysematous changes were remarkably reversed by TAX. In addition, treatment with TAX suppressed the elevated mRNA and protein levels of IL-1ß, IL-6 and TNF-α in COPD mouse lung tissue and cigarette smoke extract (CSE)-treated human bronchial epithelial cells (HBECs). Additionally, TAX significantly decreased the ratios of p-iκB to iκB and p-p65 to p65 compared with the COPD group and CSE-treated HBECs. Moreover, the results of the TUNEL assay and flow cytometry also demonstrated the anti-apoptotic effect of TAX in mouse lung tissue and HBECs. Furthermore, the elevated Bax and CCP3 levels and decreased Bcl-2 levels induced by cigarette smoke were significantly reversed by TAX treatment in vivo and in vitro. Our results highlight the ameliorating effects of TAX against cigarette smoke-induced inflammation and apoptosis in the pathogenesis of COPD.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Fumar Cigarrillos/efectos adversos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/complicaciones , Apoptosis , Nicotiana
14.
Environ Pollut ; 316(Pt 2): 120643, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36372366

RESUMEN

Advanced oxidation processes-based catalysis system as the most typical pollutant degradation technology always suffer from poor durability and photo-dependent. Inspired by the fact that some nanomaterials exhibit catalytic properties closer to natural enzymes, a high peroxidase-like activity and stability CeO2@ZIF-8 nanozyme was synthesized in this study for non-photodegradation of dyes pollution. Multiple characterization techniques were applied to prove the successful synthesis of the nanozyme. The influence of different parameters on the catalytic degradation of organic dye by nanozyme was investigated. This nanozyme achieved a maximum degradation efficiency of 99.81% for methyl orange and maintained its catalytic performance in repeated experiments. Possible degradation intermediates and pathways for methyl orange were then proposed. In addition, the CeO2@ZIF-8 loaded starch/agarose films were prepared for the portable and recyclable remediation of real dye wastewater, which maintained more than 80% degradation efficiency after 5 successive cycles. These results suggested that nanozyme based non-photocatalytic system is a potential catalyst for dye degradation and it opens a new avenue to develop high-performance and recyclable catalysts for pollutant remediation.


Asunto(s)
Contaminantes Ambientales , Fotólisis , Compuestos Azo , Catálisis , Colorantes
15.
J Thorac Dis ; 15(12): 6796-6805, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38249912

RESUMEN

Background: Almost all patients with small cell lung cancer (SCLC) relapse. The therapeutic options of relapsed SCLC are limited, and the clinical outcomes are poor. Thus, genomic profiling of relapsed SCLC patients may help to develop more effective therapeutic options. Methods: We collected blood specimens and follow-up information from a consecutive cohort of 31 patients diagnosed with relapsed SCLC in Zhongnan Hospital, Wuhan University, between 2018 and 2019, to analyze the comprehensive genomic profiling, and to investigate the impact of genomic alterations on therapeutic options and survival. Results: In our cohort of relapsed SCLC, the median number of genomic alterations was 5 (range, 1-11) per sample. The majority of patients were defined as low tumor mutation burden (TMB; 83.9%) and microsatellite stability (MSS; 87.1%). Immune checkpoint inhibitors (ICIs)-based treatment still brought considerable progression-free survival (PFS; 4.93-20.27 months) for patients with low TMB and MSS. Additionally, the most frequent genetic alterations observed in relapsed SCLC were TP53 (77%) and RB1 (52%). Other genomic alterations of high frequency were breast cancer 2 (BRCA2) (32%), ataxia telangiectasia mutated (ATM) (13%), epidermal growth factor receptor (EGFR) (10%), Notch receptor 1 (NOTCH1) (10%), and Fanconi anemia complementation group A (FANCA) (10%), in turn. Finally, based on the survival of therapeutic strategies targeting potential mutation genes, the role of genotyping in relapsed SCLC was confirmed. Conclusions: Our studies first exhibited comprehensive genomic profiling of relapsed SCLC, identifying several candidate genes, and briefly analyzed the association of survival and genomic alterations. Our data from a small cohort of relapsed SCLC will benefit further exploration the potential targets or biomarkers.

16.
BMC Cancer ; 22(1): 1243, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36451111

RESUMEN

BACKGROUND: Radiotherapy has been widely used to treat various cancers, but its efficacy depends on the individual involved. Traditional gene-based machine-learning models have been widely used to predict radiosensitivity. However, there is still a lack of emerging powerful models, artificial neural networks (ANN), in the practice of gene-based radiosensitivity prediction. In addition, ANN may overfit and learn biologically irrelevant features. METHODS: We developed a novel ANN with Selective Connection based on Gene Patterns (namely ANN-SCGP) to predict radiosensitivity and radiocurability. We creatively used gene patterns (gene similarity or gene interaction information) to control the "on-off" of the first layer of weights, enabling the low-dimensional features to learn the gene pattern information. ANN-SCGP was trained and tested in 82 cell lines and 1,101 patients from the 11 pan-cancer cohorts. RESULTS: For survival fraction at 2 Gy, the root mean squared errors (RMSE) of prediction in ANN-SCGP was the smallest among all algorithms (mean RMSE: 0.1587-0.1654). For radiocurability, ANN-SCGP achieved the first and second largest C-index in the 12/20 and 4/20 tests, respectively. The low dimensional output of ANN-SCGP reproduced the patterns of gene similarity. Moreover, the pan-cancer analysis indicated that immune signals and DNA damage responses were associated with radiocurability. CONCLUSIONS: As a model including gene pattern information, ANN-SCGP had superior prediction abilities than traditional models. Our work provided novel insights into radiosensitivity and radiocurability.


Asunto(s)
Redes Neurales de la Computación , Tolerancia a Radiación , Humanos , Tolerancia a Radiación/genética , Algoritmos , Aprendizaje Automático , Línea Celular
17.
Front Genet ; 13: 970507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105089

RESUMEN

Background: Abnormal DNA methylation of gene promoters is an important feature in lung adenocarcinoma (LUAD). However, the prognostic value of DNA methylation remains to be further explored. Objectives. We sought to explore DNA methylation characteristics and develop a quantifiable criterion related to DNA methylation to improve survival prediction for LUAD patients. Methods: Illumina Human Methylation450K array data, level 3 RNA-seq data and corresponding clinical information were obtained from TCGA. Cox regression analysis and the Akaike information criterion were used to construct the best-prognosis methylation signature. Receiver operating characteristic curve analysis was used to validate the prognostic ability of the DNA methylation-related feature score. qPCR was used to measure the transcription levels of the identified genes upon methylation. Results: We identified a set of DNA methylation features composed of 11 genes (MYEOV, KCNU1, SLC27A6, NEUROD4, HMGB4, TACR3, GABRA5, TRPM8, NLRP13, EDN3 and SLC34A1). The feature score, calculated based on DNA methylation features, was independent of tumor recurrence and TNM stage in predicting overall survival. Of note, the combination of this feature score and TNM stage provided a better overall survival prediction than either of them individually. The transcription levels of all the hypermethylated genes were significantly increased after demethylation, and the expression levels of 3 hypomethylated proteins were significantly higher in tumor tissues than in normal tissues, as indicated by immunohistochemistry data from the Human Protein Atlas. Our results suggested that these identified genes with prognostic features were regulated by DNA methylation of their promoters. Conclusion: Our studies demonstrated the potential application of DNA methylation markers in the prognosis of LUAD.

18.
Front Genet ; 13: 935601, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035179

RESUMEN

Lung adenocarcinoma (LUAD) has high morbidity and mortality worldwide, and its prognosis remains unsatisfactory. Identification of epigenetic biomarkers associated with radiosensitivity is beneficial for precision medicine in LUAD patients. SETD2 is important in repairing DNA double-strand breaks and maintaining chromatin integrity. Our studies established a comprehensive analysis pipeline, which identified SETD2 as a radiosensitivity signature. Multi-omics analysis revealed enhanced chromatin accessibility and gene transcription by SETD2. In both LUAD bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq), we found that SETD2-associated positive transcription patterns were associated with DNA damage responses. SETD2 knockdown significantly upregulated tumor cell apoptosis, attenuated proliferation and migration of LUAD tumor cells, and enhanced radiosensitivity in vitro. Moreover, SETD2 was a favorably prognostic factor whose effects were antagonized by the m6A-related genes RBM15 and YTHDF3 in LUAD. In brief, SETD2 was a promising epigenetic biomarker in LUAD patients.

19.
Infect Drug Resist ; 15: 3669-3681, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844359

RESUMEN

Background: Surgical and medical treatments are applied to pulmonary cryptococcosis (PC) in the real world, while the prognosis of different therapies is uncertain. This study investigated diagnosis, real-world therapy, follow-up outcomes, and prognosis factors, aiming to deepen our understanding of PC. Methods: Patients pathologically diagnosed with PC were retrospectively reviewed and followed up. Further comparisons and subgroup analyses were conducted in surgical and nonsurgical treatment individuals. Univariable and multivariable logistic regression methods were used to explore the risk factors associated with treatment failure. Results: One hundred and sixty-three patients were included in this study, of whom 92 underwent surgical removal of VATS or open lung surgery (68 of them received postoperative antifungal treatment) and 71 got antifungal drugs only. Compared with nonsurgical patients, surgical patients were more immunocompetent (73 [79.3%] cases vs 33 [46.5%]), showed milder symptoms and more limited pulmonary lesions. Although they had instant treatment response owing to lesions resection, there is no significant advantage in the rate of treatment failure. Multivariable regression showed independent predictive factors associated with treatment failure were polymorphonuclear (PMN)>6.30*109/L, albumin (Alb) <40g/L and antifungal dosage <400mg/d. Further analysis among patients with different immune statuses or symptoms demonstrated that sufficient antifungal dosage could reduce the rate of treatment failure. Conclusion: PC showed variable and nonspecific clinical features. PC patients with limited nodules/masses and mild symptoms often led to misdiagnosis and unnecessary lung resections. The potential risk factors including higher PMN and hypoalbuminemia could help clinicians to identify PC patients with poor treatment efficiency at an early stage. To note, sufficient antifungal dosage may improve the treatment outcomes.

20.
Materials (Basel) ; 15(11)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35683281

RESUMEN

We propose a simple but rapid strategy to fabricate self-crosslinked dual-crosslinking elastomers (SCDCEs) with high mechanical properties. The SCDCEs are synthesized through one-pot copolymerization of Butyl acrylate (BA), acrylic amide (AM), and 3-Methacryloxypropyltrimethoxysilane (MEMO). Both the amino group on AM and the methoxy group on MEMO can be self-crosslinked after polymerization to form a dual-network crosslink consisting of hydrogen bonds crosslink and Si-O-Si covalent bonds crosslink. The SCDC endow optimal elastomer with high mechanical properties (the tensile strength is 6MPa and elongation at break is 490%) as the hydrogen bonds crosslink can serve as sacrificial construction to dissipate stress energy, while covalent crosslinking networks can ensure the elasticity and strength of the material. These two networks also contribute to the recoverability of the elastomers, leading them to recover their original shape and mechanical properties after being subjected to deformation in a short time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...